
J .  Fluid Meeh. (1977), vol. 79, part 2 ,  p p .  391-414 

Printed in Great Bvitain 
391 

On cavity flow at high Reynolds numbers 
By M. NALLASAMY A N D  K. KRISHNA PRASAD 

Department of Mechanical Engineering, Indian Institute of Science, 
Bangalore-56001 2 

(Received 6 September 1975 and in revised form 9 August 1976) 

The flow in a square cavity is studied by solving the full Navier-Stokes and 
energy equations numerically, employing finite-difference techniques. Solutions 
are obtained over a wide range of Reynolds numbers from 0 to 50000. The 
solutions show that only at very high Reynolds numbers (Re 2 30000) does 
the flow in the cavity completely correspond to that assumed by Batchelor’s 
model for separated flows. The flow and thermal fields at  such high Reynolds 
numbers clearly exhibit a boundary-layer character. For the first time, it is 
demonstrated that the downstream secondary eddy grows and decays in a manner 
similar to the upstream one. The upstream and downstream secondary eddies 
remain completely viscous throughout the range of Reynolds numbers of their 
existence. It is suggested that the behaviour of the secondary eddies may be 
characteristic of internal separated flows. 

1. Introduction 
Several models have been proposed to describe separated flow in the limit of 

large Reynolds number (see Berger (1971) and Wu (1972) for comprehensive 
reviews on the subject). This paper concentrates on Batchelor’s (1956) constant- 
vorticity model. The model assumes that the separated region is of fixed extent 
at  high Reynolds numbers; in other words, the size is independent of the Reynolds 
number. It postulates the existence of a central core of constant vorticity sur- 
rounded by a thin viscous layer. The model has not been extensively tested, but 
is known to be applicable to separated regions with a fixed boundary. A geometry 
which fulfils this requirement is the cavity. 

Cavity flows have attracted considerable attention in recent years because of 
their many practical implications. Their geometric simplicity lends itself 
admirably to testing theoretical models and new numerical schemes (which are 
by far the best means of predicting the characteristics of separated flows). 
O’Brien (1972) and Bozeman & Dalton (1973) present up-to-date surveys of work 
on flows in square cavities, We restrict our attention here to some of the important 
studies to establish the rather unsatisfactory nature of the available results a t  
high Reynolds numbers vis-ci-vis Batchelor’s model. 

Burggraf (1966) was the first to study the problem of a square cavity exten- 
sively and provide definitive comparisons of Batchelor’s model with numerical 
solutions of the Navier-Stokes equations. The computations, limited to a 
Reynolds number of 400, show that the flow in a square cavity at  low Reynolds 
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number consists of three eddies: one primary vortex and two secondary eddies. 
According to Batchelor’s model each of these eddies should exhibit a ,  core of 
uniform vorticity in the limit of infinite Reynolds number. The results of 
Burggraf show that the primary eddy exhibits a definite trend towards a core of 
uniform vorticity. But the upstream secondary eddy is found to remain com- 
pletely viscous even a t  Re = 400. Here one can argue that a Reynolds number of 
400 is not high enough to represent adequately the characteristics of the large 
Reynolds number limit. 

The second important study is the experimental work of Pan & Acrivos (1967), 
which provides some information for Reynolds numbers very much larger than 
400. Their results clearly show that the size of the primary vortex is dependent on 
Reynolds number up to a value of 2700 at least. The upstream corner eddy 
increases in size up to a Reynolds number of 600 and thereafter shrinks con- 
tinuously. At a Reynolds number of 2700 (the maximum value investigated) the 
upstream eddy retreats to the corner, becoming very small, as at Re = 0. Thus 
the secondary eddy does not exhibit a fixed extent a t  large Reynolds numbers. 
The growth and decay of the secondary eddy together with the viscous nature 
observed by Burggraf at Re = 400 indicate that the eddy remains viscous 
throughout the range of Reynolds numbers. These two features of the separated 
eddy appear to be inconsistent with the concepts of Batchelor’s model. I n  fact, 
no physically unconstrained closed-streamline flow is known to exhibit a viscous- 
to-inviscid transition. 

It may be pointed out that the experiments of Pan & Acrivos did not exhibit 
the second eddy a t  the downstream corner of the cavity which has been noticed 
in many numerical computations (bee, for example, Greenspan 1969; Bozeman & 
Dalton 1973). While detailed results are not presented by Greenspan, it was 
clearly demonstrated that the eddy system in a square cavity reduced to a single 
primary eddy at some Reynolds number between lo4 and lo5. 

The picture that emerges from the above is that relatively few detailed studies 
are available on the structure of cavity flows for a wide range of Reynolds 
numbers. A few broad questions with respect to the characteristics of the 
secondary eddies, the Reynolds number at which they disappear, the position of 
the vortex centre as a function of the Reynolds number and finally the limiting 
value of the vorticity remain unanswered. In  other words, no results (numerical 
or experimental) exist which completely validate the Batchelor model. This 
paper presents detailed results of numerical solutions to the Navier-Stokes 
equations governing flows in square cavities which answer all the questions raised 
above. Heat-transfer results are also presented for one set of boundary conditions 
on the cavity walls. Lastly, the results are compared with the computations 
based on Batchelor’s model presented by Burggraf. 

2. Governing equations 
We consider the steady, plane, laminar motion of an incompressible, constant- 

property, Newtonian fluid in a square cavity. The flow itself is induced by steady 
motion of one of the walls in its own plane. The moving wall is at a uniform 
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FIGURE 1. Definition sketch. 

temperature higher than that of the other three walls, which are also at uniform 
temperature (see figure 1). This problem is the same as the one studied by many 
earlier investigators. 

The governing equations of the problem are 

V2$ = - w ,  (1)  

The boundary conditions to be satisfied are 

In the above equations, +, w and T are the dimensionless stream function, 
vorticity and temperature and Re and Pr denote the Reynolds and Prandtl 
numbers rcspectively. 
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3. The numerical technique 
A detailed description of the numerical technique employed in the present 

investigation is available elsewhere (Nallasamy & Krishna Prasad 1974). Here 
we shall mention only a few of its main features. A discrete analogue of (1)-(6) 
is constructed using the 'upwind' difference scheme, which is known to yield 
stable solutions up to very high Reynolds numbers. The simultaneous equations 
generated by the finite-difference scheme are solved by the alternating direction 
line iterative (ADLI) method developed by the authors. This method combines 
the advantages of the conventional alternating direction implicit procedure and 
the line successive over-relaxation procedure. It has been shown to be accurate 
and reliable for flows up to very high Reynolds numbers, to be economical and is 
very easy to code. 

The convergence criterion used in thisinvestigation is 1 (f"+l- f n) / (  fn+l) lmax < e,  
where f is the function iterated, n the iteration count and e an arbitrary small 
number. A value of e = 0.6 x for the vorticity both on the boundary and at 
interior points gives accurate solutions of the momentum equations. A value of 
e = 0.1 x is chosen for the temperature field. A mesh size of h = & is used 
throughout the investigation and provides adequate spatial resolution. 

The computational results on the flow field are used to calculate the total 
messure P from 

The reference value for the total pressure is chosen as the value at the centre of 
the bottom wall. The Prandtl number for the results presented here is unity. All 
the computations were carried out on an IBM360/44 System. The results are 
discussed in the next section. 

4. Results and discussion 
A large amount of numerical information on the Reynolds number range 

0-50 000 has been collected during the present investigation. Some selected 
results are presented in this section with the particular aim of describing the 
asymptotic behaviour of cavity flows at high Reynolds numbers. 

Secondary vortices 

At the outset, we shall consider the process of stabilization of the eddy system in 
the cavity. The flow in a square cavity at  low Reynolds numbers is characterized 
by three eddies: one occupying the central core and two other, secondary eddies 
located at the corners of the bottom wall. These corner eddies each exhibit twc 
length scales: Ll and L2 for the upstream corner eddy and L3 and L4 for the 
downstream one (see figure 1 for the definitions of these lengths). The variation of 
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FIGURE 2. Upstream eddy size. 0. Burggraf (1966); 0, Bozeman & Dalton (1973); $, Pan 
& Acrivos (1967); V, present L,; A, present L,; 0 ,  x,, Leal (1973); m, yr, Leal (1973). 

Ll and L, with Reynolds number is plotted in figure 2 .  The plot shows that the 
size of the eddy attains a maximum a t  a Reynolds number of 600. It is completely 
obliterated at  a Reynolds number of 5000. Ll and L2 exhibit a similar behaviour, 
but Ll is always larger than L,. The numerical results of Burggraf (up to Re = 400) 
and Bozemann & Dalton (up to Re = 1000) and experimental results of Pan & 
Acrivos (up to Re = 2700) for Ll are also plotted in this figure. It is seen that the 
present computations show the best agreement with the experimental findings. 
All the earlier investigations tacitly assume that one length scale (LJ is sufficient 
to characterize the secondary eddy. Such an assumption is not justifiable as can 
be concluded from the figure. The difference between Ll and L, varies significantly 
with Reynolds number. 

It may be instructive to note here that there have been instances where 
erroneous solutions showing two major eddies in the cavity were obtained. 
Runchal & Wolfshtein (1969) obtained two major eddies for a Reynolds number 
of 104, using a mesh size of A. This erroneous solution was corrected in their later 
publications (Runchal, Spalding & Wolfshtein 1969; Gosmanetal. 1969). Bozeman 
& Dalton (1973) obtained two major eddies at Re = lo3 when they used a uni- 
directional difference approximation to the convective form (UDC) of the 
governing differential equation. For the same Re, they obtained only one major 
eddy on using a unidirectional difference approximation to the divergence form 
(UDD) of the differential equation. So they conjectured that the solution exhibits 
one or two major eddies depending on the finite-difference approximation used. 
But their comparison of the two difference approximations is somewhat confusing 
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FIGURE 3. Streamline pattern showing two ma.jor eddies; 
Re = 1000, h = %lo. 

for the following reasons: (a )  they employ different mesh sizes for the two 
difference approximations, h = & for the UDD solution and h = & for the UDC 
solution; ( b )  they state that the reason why Runchal & Wolfshtein obtained two 
major eddies may be their coarse mesh size. 

In  an attempt to clear up this confusion, the present authors made a systematic 
and careful examination of the causes of such erroneous results. This indicated 
that they are zt result of the finite-difference approximations used for the 
boundary conditions and the manner in which the boundary conditions are 
satisfied. These factors appear to become insignificant when sufficiently small 
mesh sizes are used. 

As an example, we show an erroneous solution which we obtained by using the 
same finite-difference approximation (UDC) for the differential equations as in 
the rest of the present study but a different method of handling the boundary 
conditions. In  the present study, the evaluation of boundary values involved the 
computation of vorticity values on the boundary and stream-function values at 
points a distance h from the boundary, as described by Nallasamy & Krishna 
Prasad (1974), who show that with this method of handling the boundary 
conditions even a mesh size of h = $v yields the correct solution (one major eddy) 
at Re = 103. I n  obtaining the solution shown in figure 3, the evaluation of 
boundary values involved only the computation of the vorticity at the boundary 
points. The values of the stream function at all the points inside the boundary 
were computed using a finite-difference form of the differential equation (1). 
The method of handling the boundary conditions is probably one of the reasons 
why Bozeman & Dalton’s procedure does not yield solutions for Reynolds 
numbers greater than 1000. 

Returning to our discussion of the upstream corner eddy, an important result 
of the study is that this eddy remains completely viscous throughout the range 
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FIGURE 4. Viscous nature of upstream secondary eddy; Re = 500. 

of Reynolds numbers of its existence. This is best illustrated by plotting the 
streamline pattern when its size is a maximum. Figure 4 shows such a plot, for 
Re = 500. The streamline pattern shows no sign of the flow becoming inviscid, 
because in such a case the vortex centre should nearly coincide with the geometric 
centre of the region and the flow around the centre should be uniform. Further, 
u and w velocity profiles on the lines through the vortex centre clearly indicate the 
viscous nature of the flow. As pointed out earlier, Burggraf shows that at Re = 400 
the upstream eddy is completely viscous in nature. It is worthwhile to recall two 
related studies on separated flows by Leal (1973) and Grove et al. (1964). In  his 
numerical study of separated flow over a finite flat plate Leal observes that the 
separated flow remains viscous up to a Reynolds number of 800 (the maximum 
value investigated). In their experiments on flow past a circular cylinder Grove 
et al. find the separated flow to remain viscous even at the maximum value of 
Re (2: 200) attained (i.e. just before flow instability sets in). 

The nature of the Navier-Stokes equations demands that a completely viscous 
region should thin down with increasing Reynolds number. The experimenta1 
study of Pan & Acrivos and the present(as well as Bozeman & Dalton’s) numerical 
study show clearly the decrease in size of the upstream eddy at high Reynolds 
numbers. Further, the present study shows that at sufficiently high Reynolds 
numbers the physically unconstrained closed-streamline flow (the upstream 
corner eddy) gradually turns into a thin viscous layer with no recirculation. Here 
it is worth noting a study by Leal & Acrivos (1969). They consider the flow past 
a finite plate whose surface moves with a constant velocity U, in a direction 
opposite to that of the free stream (of velocity U,). For any velocity ratio Uo/U, 
the separated region is largest a t  the smallest Re (based on U, and the length of 
the plate). With an increase in Re, the size (width) of the separated region 
decreases. 

The size of the downstream corner eddy (characterized by L3 and L4) is plotted 
in figure 5 as a function of ReynoIds number. This eddy is small and is practically 
independent of Reynolds number up to Re = 600. Similar behaviour has been 
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FIGURE 5. Downstream eddy size; present computations. 0,  L,; v,  L4. 
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FIGURE 6. Viscous nature of downstream secondary eddy; Re = 4000. 

reported by Burggraf. As the upstream eddy begins to shrink in size beyond 
Re = 500, the downstream eddy begins to grow; the maximum size of the 
downstream eddy occurs at Re = 4000 (at this value of Re the size of the upstream 
eddy is insignificant) and it apparently disappea.rs at Re = 30 000. The existence 
of a downstream corner eddy even after the disappearance of the upstream one 
is evident in Greenspan's (1969) work (see the figure corresponding to Re = 10 000) 
as well. Thus it may be seen that the downstream eddy undergoes a growth and 
decay process similar to that of the upstream one. The downstream eddy's stream- 
wise length L3 is greater than its cross-stream length L4 only beyond Re = 500. 
The fact that the downstream corner eddy also remains completely viscous in the 
range of Reynolds numbers of its existence is illustrated in figure 6. This figure 
shows the streamline pattern of the eddy at Re = 4000 together with the u and v 
velocity profiles on the lines through the vortex centre. 

The relative strengths of the secondary eddies as a function ofReynolds 
number can be studied by observing the values of the stream function at their 
centres (table 1). The downstream eddy is very weak up to Re = 2000, which is 
probably the reason why Pan & Acrivos did not observe i t  in their experiments. 

The physical mechanism behind the growth and decay of the secondary eddies 
can be understood by referring to the streamline patterns in the cavity at 
Re = 400 and EiOOO, shown in figure 7. At the low Reynolds number end, there is a 
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Re 
100 
200 
400 
500 
7 00 

1000 
2 000 
3 000 
4 000 
5 000 
6 000 

10 000 
20 000 
30 000 

@ at the centre of the secondary vortices 
r A - 

Upstream vortex 
- 0.241 x 
- 0.146 x 
-0.583 x loT3 
-0.782 x lop3 
-0.943 x 
-0.932 x 
- 0.542 x 
- 0.241 x lop3 
- 0.395 x 

Downstream vortex 
- 0.480 x 
- 0-681 x 
-0.169 x 

- 0.506 x 
- 0.103 x 
- 0.502 x 
- 0.848 x 
-0-996 x 
- 0.990 x 10-3 
- 0.940 x 
- 0.607 x lo-' 
- 0.194 x 

- 0-264 x 10-4 

- - 

TABLE 1. Strength of secondary vortices. 

(a )  (b)  

FIGURE 7. Streamline patterns: growth and decay of secondary eddies. 
(a)  Re = 400, (b )  Re = 5000. 

strong deceleration of the flow along the wall from (0 , l )  to (0,O). At (0, 0) ,  the 
flow encounters an obstruction which results in a further increase in pressure. The 
kinetic energy of the fluid stream in the vicinity of the wall at this low Reynolds 
number is low and the stream is unable to negotiate this pressure hill, with the 
result that it  separates, forming an eddy at the corner. As the Reynolds number 
increases the stream kinetic energy also increases and hence the eddy shrinks 
in size, completely disappearing at Re = 5000. A similar situation prevails on the 
bottom wall of the cavity. However, the stream along this wall possesses much 
smaller kinet.ic energy by virtue of frictional loss along (0, 1)-(0, 0). Therefore it 
needs a much larger Reynolds number to overcome the adverse pressure gradient, 
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FIGURE 8. Pressure distribution on stationary walls. -, Re = 100; -- -, 
Re = 1000; -*.-, Re = 3000; ---*-,Re = 10000; ---- , Re = 30000. 

hence the observed behaviour of the downstream corner eddy. It may be of 
interest to note that similar phenomena have been observed by Leal (1973). For 
a decelerating flow over a flat plate he finds that the length of the separated eddy 
first increases with Reynolds number but that the rate of increase sharply reduces 
at larger Reynolds numbers. The variation in its streamwise and cross-stream 
lengths (x, and yw in Leal's paper) with Reynolds number is shown in figure 2. 
The investigation is limited to Re = 800 and it is not known whether the size of 
the eddy will actually decrease with further increases in Re.] 

The above nature of the secondary eddies results in a complex variation of the 
wall pressure. The pressure on the stationary walls is plotted in figure 8 for 
Reynolds numbers of 100,1000,3000,10 000 and 30 000. It is to be noted that the 
pressures have been computed with reference to the pressure at the centre of the 
bottom wall. The pressure on the wall (0, 1)-(0,O) shows a minimum whose 
magnitude increases with increasing Re. Also, the point a t  which the minimum 
occurs moves towards the corner (0,O) with increasing Re. At a Reynolds number 
of 30 000 the point is very near to the corner, indicating that the flow near the wall 
(0, 1)-(0,O) no longer encounters strong deceleration due to the corner. The 
pressure variation on the bottom wall is more complicated because of the 
existence of upstream and downstream corner eddies. The actual magnitudes of 
the pressures themselves are small on this wall. (Note the change in scale.) For 
Re = 3 000 the magnitude of the pressure on the wall is lower than for Re = 10 000, 
This may be due to the disappearance of the upstream and downstream eddies. 
The pressure on the wall (0,l)-( 1 , l )  shows the accelerating tendency of the flow 
as it approaches the top moving wall. 
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FIGURE 9. Centre of primary vortex. 0, Re = 0;  0, Re = 100; 0, Re = 400; 0 ,  Re = 700; 
A ,  Re = 1000; V, Re = 2000; 'I, Re = 10000; v,  Re = 30000. 

FIGURE 10. Stream function and total-pressure contours; 
Re = 30 000; ---, total pressure; -, streamline. 

The behaviour of the primary eddy is studied by noting the location of its centre 
as a function of Reynolds number (figure 9). At a low Reynolds number of 100, 
it moves upstream with respect to its location at Re = 0;  as the Reynolds number 
is increased, it moves towards the centre of the cavity. The tendency of the vortex 
centre to move towards the geometric centre has also been reported by Burggraf 
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as well as Bozeman & Dalton. In  addition, Burggraf illustrates that,when a coarse 
mesh size is employed for the computations, the vortex centre erroneously moves 
away from the geometric centre with increasing Re .  As can be seen from figure 9, 
no such problem is encountered, even a t  very high Reynolds numbers, with the 
mesh size used in the present computations. 

Figure 10 shows the streamlines obtained at Re = 30000. The flow closely 
resembles the inviscid flow with the centre of the primary vortex coinciding with 
the geometric centre of the cavity and the disappearance of the secondary eddies. 
The first two contours ($ = 0.09 and 0.07) enclosing the vortex centre are nearly 
circular. In  the inviscid limit the total pressure is conserved along the streamlines, 
in which case the total-pressure contours should coincide with the streamlines. 
The dashed lines represent the total-pressure contours and the close similarity 
between the two sets of contours in the core region is evident. 

Thus if we consider only the primary vortex, it  confirms completely Batchelor’H 
constant-vorticity model. Before we examine in greater detail several other fea- 
tures of the cavity flow we digress a little to discuss the reliability of the present 
computational results. 

Reliability of numerical solutions 

In  finite-difference computations, the major question is whether a chosen mesh 
size produces an accurate solution. This question is not answerable in general 
even for simple shapes and linear systems. In  practice, the effect of mesh size is 
ascertained by obtaining solutions with successively smaller mesh sizes. In  the 
present case, a refinement of the mesh, by, say, halving the mesh size, in the entire 
region is impractical owing to the prohibitive time and memory requirements on 
the computer (the computer available to the authors simply does not have such 
storage facilities). No attempt was made to use a graded or non-uniform mesh, 
since in such a case use of the ADLI method becomes quite complex. The use of 
successive over-relaxation for high Reynolds number flows results in excessively 
slow convergence or divergence (Nallasamy & Krishna Prasad 1974). So it was 
decided to study two specific aspects of the solution, namely, the dependence of 
the size of the secondary eddies on the mesh size and the effect of mesh size on 
the main fiow. 

Regarding the behaviour of the secondary eddies, it was hypothesized that a 
reduction in mesh size would alter only the Re a t  which the eddy disappears and 
not the asymptotic picture. This hypothesis was tested by obtaining solutions 
with three mesh sizes, &, & and&, and comparing the eddy sizes. Table 2 shows 
the sizes of the eddies obtained with the three mesh sizes for Re = 5’000. A reduc- 
tion in mesh size from& to & does not result in the reappearance of the upstream 
corner eddy and produces only a small change in the size of the downstream eddy. 
Table 3 shows the sizes of the secondary eddies obtained with the three mesh 
sizes for high Reynolds numbers. It is seen that, though the actual R e  a t  which 
the eddy is completely obliterated is progressively increased with improvement 
in spatial resolution, the picture that as R e  -+ co the separated region tends to 
disappear is confirmed. 
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Mesh size 
h Ll L, L8 L4 

3- 4 0  - - 0.261 0.223 
-L 5 0  - - 0.288 0.245 
A- - - 0.296 0.252 

TABLE 2. Effect of mesh size: Re = 5000. 

h = A- 
& 

10 000 0-0853 0.0752 
20 000 - - 
30 000 - - 
40 000 - - 
50 000 - - 

Re L, L4 

TABLE 3. Effect of mesh size: size of the downstream eddy. 

Second, the contention that the improvement in spatial resolution will not 
produce appreciable changes in the main flow was verified for Re = 30000. 
Table 4 shows the centre-line u velocities obtained using the three mesh sizes 
A, & and & for Re = 30 000. It is seen that the differences between the two sets 
of values obtained with h = & and h = & are considerably smaller than the 
differences between the results obtained with h = & and &, indicating that 
h = & is sufficiently small. This is also confirmed by the values of the vorticity 
a t  the vortex centre at  Re = 30000 obtained with the three mesh sizes. These 
values are 1.43, 1.27 and 1.30 respectively for the mesh sizes &, -& and A. 

Finally, a point of importance in solving the Navier-Stokes equations is that 
the method should be capable of adequately describing the nature of the 
boundary-layer flow in regions of the flow where boundary-layer theory applies. 
To achieve this with a kite-difference technique, the mesh size in these regions 
must be adjusted in accordance with boundary-layer theory. (Note that this is in 
contrast to the Re3 dependence in spectral simulation of laminar flow with a 
viscous layer; see Orszag & Israel 1974.) In  the present problem, the variation of 
the width of the major viscous regions (the secondary eddies) with Re-4 (figure 11) 
shows the following: (a )  the viscous regions do not exhibit a regular boundary- 
layer behaviour, i.e. the width does not decrease monotonically as Re-+ with 
increasing Reynolds number; ( b )  the range of Re in which the width varies as 
Re-8 is different for the upstream and downstream corner eddies. Also, as 
explained in the previous section, the operating Reynolds number for each eddy 
appears to be different. If a Reynolds number characteristic of the secondary 
eddies is deked ,  a condition like h JRe < 1 would be easily satisfied by the mesh 
size used in the present computation. 

Thus the checks show that the asymptotic picture of the separated eddies 
exhibited by the present study is sufficiently accurate and reliable. In  what 
follows we examine other features of the cavity flow. 

26-2 
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+ 0.075 
+ 0.156 
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+ 0.364 

40 

0 

0 

)& = 2- 

- 1.0 
- 0.317 
- 0.207 
- 0.127 
- 0.060 

+ 0-062 
+0-135 
+ 0.222 
+ 0.327 

s o  

0 

0 

TABLE 4. Centre-line u velocity: Re = 30 000. 

h = 2- 
0 0  

- 1.0 
- 0.309 
- 0.207 
- 0.126 
- 0.063 

+ 0.060 
+0*129 
+0.216 
+ 0.312 

0 

0 

I 
0.25 

FIGURE 11. Width of the secondary eddy. a, upstream eddy (WJ; 
A, downstream eddy (W,). 

Velocity and temperature profiles 
Figure 12 shows the u velocity profiles on the vertical centre-line (x = 0.5) and 
the v velocity profiles on the horizontal centre-line (y = 0-5) of the cavity for 
different Reynolds numbers (100, 1000, 10000 and 30000). It also includes 
profiles for fully viscous flow (Re = 0 )  and fully inviscid flow (Re  --f co). The 
profiles for Re  = 0 and 100 are well rounded. On the vertical centre-line, the 
velocity profiles (in the core) in the intermediate range Re = 200-1000 are 
parallel to the inviscid profiles. This result prompted Burggraf to suggest that 
the slope of the velocity profiles in the core region is independent of Reynolds 
number. However the profiles at higher Reynolds numbers intersect the inviscid 
profile at an angle which is a function of the Reynolds number. As a matter of 
fact the form of the profiles at  higher Reynolds numbers indicates that they can 
be constructed to a good approximation by matching asymptotically the solutions 
for the boundary layer and the inviscid core. Similar behaviour is observed for 
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FIGURE 12. Centre-line velocities. (a) u velocity on vertical centre-line. (a) w velocity 
on horizontal centre-line. - a  - , Re=O; -, Re= 100; ---, Re= 1000; ---, 
Re = 10000; ----, Re = 30000; - - -, Re + co (Burggraf 1966). 

the v velocity profiles on the horizontal centre-line except that the slope transi- 
tion discussed above occurs a t  a much higher Reynolds number. This difference 
in behaviour is due to the secondary eddy at the downstream corner, which 
persists up to a very high Reynolds number. 

Another interesting feature of the velocity profiles is an overshoot in the 
region of transition between the viscous layer and the inviscid core. According to 
Burggraf, this represents a fundamental difference between recirculating flows 
and single-pass flows. The difference arises because of periodic past history of the 
boundary layer. Such an explanation seems to us to be somewhat speculative in 
the light of some of the recent numerical solutions of the Navier-Stokes equations. 



406 M .  

1.0 

0.5 

Y 

Nallmamy and K.  Krishna Prmad 

0 0.5 1 .o 
T 

1.0 , 

0.5 

0 0.5 

2 

1 .O 

FIGURE 13. Centre-line temperature profiles. (a) On vertical centre-line. (b) On horizontal 
centre-line. -, Re = 100; - - - ,Re = 1000; - - - , R e  = 10000; - - - - ,Re = 30000. 

Similar velocity overshoots are observed in the entrance region of flow in a two- 
dimensional channel when the solution is constructed numerically from the 
Navier-Stokes equations (Wang & Longwell 1964; Brandt & Gillis 1966), in full 
Navier-Stokes solutions of external flows (Mehta & Lavan 1975), and in wind- 
tunnel experimental velocity profiles (Acrivos et al. 1968). It should be noted that 
this overshoot is smeared if the solution is obtained from the boundary-layer 
approximation to the problem (see for example Bodia & Osterle 1961 ; Schlichting 
1968, on the entrance flow problem). That this overshoot is not a consequence of 
the numerical scheme employed but an inherent property of the Navier-Stokes 
equations has been unambiguously established by Van Dyke (1970) and 
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Abarbanel et al. (1970). The present authors examine the mechanism of this 
overshoot in a separate publication on the transient flow and heat transfer in the 
entrance section of a two-dimensional channel (Nallasamy & Krishna Prasad 
1976). The main conclusion that emerges from this investigation is that the over- 
shoot is caused by a complex interaction between the diffusion of vorticity in the 
transverse and streamwise directions respectively. This discussion leads us to 
conclude that the velocity overshoot is a characteristic exhibited by the Navier- 
Stokes equations while describing flows with thin boundary layers interacting 
with inviscid regions. 

Application of Bachelor’s model to cavity flows will produce smeared velocity 
profiles as in the boundary-layer solutions for entrance flow. This raises the 
question of adequacy of the model for practical computations. The experience 
with entrance flows in two-dimensional channels indicates that the boundary- 
layer result (though it produces smeared velocity profiles) is an excellent approxi- 
mation to important engineering quantities such as skin friction. Batchelor’s 
model for cavity flows will likewise serve as an extremely useful and reliable tool 
for engineering analysis. 

Figure 13 shows the temperature profiles on the vertical and horizontal 
centre-lines of the cavity. The temperature profiles exhibit overshoots similar 
to those observed in the velocity profiles. It is also clear that the overshoots move 
towards the wall as the boundary layer thins down (this phenomenon is not very 
clear with the velocity overshoots because of the complex growth and decay of 
secondary eddies). The influence of the boundary-layer thickness on the magni- 
tude and position of the overshoot is brought out clearly in studies of transient 
entrance flow (Nallasamy & Krishna Prasad 1976). 

Vorticity and temperature contours 

Figure 14 shows the vorticity contours obtained a t  Re = 30000. It clearly 
demonstrates the existence of a constant-vorticity core occupying the major 
portion of the cavity in conformity with Batchelor’s model. The value of the 
vorticity a t  the vortex centre is 1.27. This is approximately a third smaller than 
the limiting value (1.89) computed by Burggraf. In  order to establish the 
reliability of the present result, we list in table 5 the values of the vorticity, the 
stream function and the pressure coefficient obtained for different Reynolds 
numbers by Burggraf and in the present investigation. The present results 
depart from Burggraf’s numerical results at R e  = 100 and 400 by less than 
1 yo, which can be easily ascribed to the larger mesh size employed by Burggraf. 
The variation of the vorticity at the vortex centre with Reynolds number 
is also shown in figure 15., The value of the vorticity goes on decreasing until 
the corner vortices become insignificant. This is due to the secondary eddies 
sapping the strength of the primary eddy (Mills 1965). After the disappearance 
of the corner vortices, the vorticity a t  the vortex centre increases. For the largest 
Reynolds number considered in the present investigation (50 000)’ the vorticity 
at the vortex centre has a value of 1.45. This is in conformity with the Greenspan 
value between 1.6 and 1.7 for Re = lo5. These results show the trend towards 
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FIUITRE 14. Vorticity contours; Re = 30 000. 

Present (h  = &,-) Burggraf (h  = &-) 

Re 
100 
400 
700 

1000 
2 000 
3 000 
5 000 
10 000 

30 000 
40 OOOt 
50 OOOt 

20 ooot 

@c 

0.1026 
0.1014 
0-0986 
0-0977 
0.0951 
0-0906 
0-0861 
0.0873 
0.0982 
0.0977 
0.105 
0.108 

0, - C,, @c WC - c,, 
3.155 0.1844 0.1015 3,143 0*1810 
2.114 0.1820 0.1017 2.142 0.1793 
2.02 0.178 
1-83 0.158 
1.57 0.132 
1.42 0.118 
1.29 0.134 
1.21 0.212 
1.35 - 
1.27 0.376 
1.39 - 
1.45 - 

-f Pressure coefficients have not been computed at these Reynolds numbers. 

TABLE 5. Stream function, vorticity and pressure coefficient 
at  the centre of the primary vortex. 

a definite limit as Re + 00. The Burggraf limiting value appears quite plausible 
in the light of these results. However, Burggraf did not take into account the 
pressure gradient that is observed in the cavity while calculating the limiting 
vorticity value. Figure 16 shows the pressure gradient along the walls of the 
cavity at a Reynolds number of 30000. Accounting for the pressure gradient 
should result in a lower value for the vorticity at the vortex centre (see for 
example Mills 1965). 

In  the limit Re + co, the vorticity and temperature contours should be similar. 
This implies that the temperature field should be uniform in the core (Burggraf 
also derives this fact analytically). This is demonstrated in figure 17, which 
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FIGURE 16. Pressure gradient on the walls; Re = 30000. 
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FIGURE 17. Temperature contours; Re = 30000. 

depicts the isotherms, and also by the temperature profiles on the centre-lines 
of the cavity shown in figure 13. The temperature at the vortex centre, plotted in 
figure 15, behaves in a manner similar to that of the vorticity at the vortex centre. 

Heat-flux results 
The variation of the non-dimensional temperature gradient (heat flux) along the 
walls of the cavity is shown in figures 18 (a)  and ( b ) .  Figure 18 (a) gives the results 
for the moving wall a t  several Reynolds numbers. The result a t  Re = 100 agrees 
very well with the numerical results of Burggraf. At larger Reynolds numbers, 
the heat-flux distributions exhibit a boundary-layer character and furthermore 
the increase in heat flux a t  higher Reynolds numbers clearly demonstrates the 
thinning down of the boundary layer. The heat-flux distributions on all three 
stationary walls are presented in figure 18 ( b )  to facilitate easy comparison. Again 
the agreement with the Burggraf numerical computation at Re = 100 is very 
good. As the Reynolds number is increased, the extent of the region over which 
the corners influence the heat flux is considerably reduced. The boundary-layer 
character is clearly brought out by plotting the non-dimensional temperature 
gradients at the midpoints of the walls against JRe (figure 19). The boundary- 
layer behaviour at Reynolds numbers of 20 000 and above is evident from the 
linear variation of the temperature gradient with ,/Re. The slope of the line is 
different for each wall and goes on decreasing from the upstream moving wall to 
the downstream side wall. This is due to the decelerating nature of the flow 
(Evans 1968). 
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FIGURE 18. Heat flux on (a)  the moving wall and (b )  the sta.tionary walls. -, Re = 100; 
-_- , Re= 1000; -..-, Re= 3000; ---, Re= 10000; ----, Re= 30000; 0 ,  
Burggraf (1966). 
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FIUURE 19. Heat flux at the midpoints of the walls. 

5. Concluding remarks 
A careful examination of the flow in a square cavity at high Reynolds numbers 

indicates one important feature: the tendency of the secondary eddies to shrink 
continuously in size. The implications are that the flow in the cavity in the limit 
of infinite Reynolds number would consist of a single vortex with a constant- 
vorticity core surrounded by a thin viscous layer as assumed by Batchelor’s 
model. Though we have not been able to establish unambiguously that the 
secondary eddies disappear at a finite Reynolds number (table 3) owing to the 
finite mesh sizes employed, the qualitative features of this aspect of the flow are 
well supported by the agreement of the present results with the experimental 
results of Pan & Acrivos. 

The observed behaviour of secondary eddies opens up two possibilities: 

(i) To consider the secondary eddies in the cavity flow as special cases of a very 
restricted class of separated flows and ignore the present results, saying that they 
are of little consequence. 

(ii) To consider the present picture of the secondary eddies as representative 
of general laminar separated flows and examine the consequences. 

The main reasons compelling one to consider the second possibility are as 
follows : 

(a )  The reliable picture of the flow that is available in the present study per- 
tains to a range of Reynolds numbers higher than those employed for developing 
any asymptotic model. (An exhaustive discussion of the existing separated flow 
models and their limitations is given by Nallasamy 1975.) 
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(b)  The qualitative features of the flow obtained in the present study are in 
agreement with the experimental results of Pan & Acrivos for the same geometry 
(up to Re = 2700), which establishes the growth and decay of separated regions. 

(c) The secondary eddies remain completely viscous throughout the range of 
Reynolds numbers of their existence. The viscous nature of separated regions 
is in conformity with the experimental results of Grove et al. (1964) and Aerivos 
et al. (1965, 1968). This seem& to suggest that the corner eddies in the cavity flow 
can be visualized as regions of separated flow produced by an outer flow: the 
primary vortex. 

If we consider the second possibility, the model of separated flow a t  large 
Reynolds numbers that emerges is as follows: the laminar separated regions 
(physically unconstrained closed-streamline flows) remain completely viscous a t  
any Reynolds number; the viscous separated region thins down at large Reynolds 
numbers and is forced to become a viscous region with no recirculation. This 
picture of the limiting solution appears to be devoid of any inherent inconsistency. 

One way of examining this model in detail would be to study the high Reynolds 
number solutions for the flow in a rectangular cavity for different aspect ratios. 
Another is to consider high Reynolds number solutions for other classes of 
separated regions. Nallasamy (1975) examines the present model in detail for the 
separated regions in a duct. The results will be discussed in a separate paper. 
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